线虫动物门

求闻百科,共笔求闻

线虫动物门
化石时期:埃迪卡拉纪[来源请求]至现代
蛔虫
生物分类法 编辑
域: 真核域 Eukaryota
界: 动物界 Animalia
演化支 浮浪幼虫样动物 Planulozoa
演化支 两侧对称动物 Bilateria
演化支 肾管动物 Nephrozoa
演化支 原口动物 Protostomia
总门: 蜕皮动物总门 Ecdysozoa
演化支 环神经动物 Cycloneuralia
演化支 线虫动物 Nematoida
门: 线虫动物门 Nematoda
Rudolphi, 1808

线虫动物门(学名:Nematoda[1])是动物界中最大的之一,为假体腔动物,绝大多数体小呈圆柱形,又称圆虫(roundworms)。

线虫的物种很不容易区分,有相关描述的已超过二万五千种[2][3],其中超过一半是寄生性的(包括许多植物人类在内动物的病原体[4]。线虫的物种数估计超过一百万种[5],只有节肢动物比线虫更多样化。线虫的消化系统是有二个开口的管状消化系统,和刺胞动物门扁形动物门不同。

线虫几乎已适应了地球所有的生态系,从海洋(海水)到淡水土壤极地赤道、也包括不同海拔高度的地区。它们在淡水、海水、陆地上随处可见,并在极端的环境如南极海沟都可发现,其个体数量及物种个数会常常超过其他的动物,甚至在高山沙漠、南极和海沟中都可以生存。在岩石圈每个部分都有线虫的存在[6],甚至是在南非地下900米到3600米深的金矿坑表面也不例外[6][7] [8][9]海床上有90%的动物是线虫[10]。线虫的数量众多,常常每立方米就有上百万个线虫,占地球所有动物的80%,线虫生命周期的多样性,在各种营养条件下都有存在,也使得他们在许多生态系统中有重要的影响[11]。有些线虫会有隐生的特性。

线虫原先在1919年被Nathan Cobb命名为Nemata。后来,它们被降级为囊蠕虫中的一纲,最后才被重新分类至线虫动物门

形态学

线虫动物门(左,蛔虫)和环节动物门(右,环毛蚓)的对比解剖

线虫是三胚层后生动物,有一套完整的消化器官。线虫没有循环系统呼吸系统;呼吸及物质的运输完全是透过扩散作用完成的。体薄、纵切面为圆形,但实际上是两侧对称的。线虫的体腔是一个狭窄的假体腔。口部经常有不同的盖口或突出物,有捕食及感觉的功能。在肛门之后的身体部位称做尾部。表皮会分泌出堆积成层的角质层,保护身体免于干燥、消化液,或其他严苛环境的破坏,有些种类还会形成移动用的突出物,例如帮助活动的纤毛。虽然此角质层允许移动及形状改变,它仍非常不具弹性,且不允许虫体的体积变大。因此,随着虫体长大,它就得蜕皮、并产生新的角质层。角质层不允许体积改变的原因是要维持体内的高液压。因为这个原因,线虫没有环状肌,只有纵向肌,因为没有这个必要。线虫体内的液压就是它们是圆形的原因。

线虫有一套简单的神经系统。一条主神经索在腹侧延伸,在头端的感觉构造被称做双器(amphid),而尾端的感觉构造则被称做侧尾腺孔(phasmid)。

大部分自由生活的线虫都相当微小,但有几种寄生性的线虫,如:蛔虫,可长到好几米。因为无环状肌的缘故,线虫的身体只能往两侧方向摆动,所以它移动的条件是要附着在固体物品上;其扭动挣扎的动作很难游泳,甚至根本无法游泳。

食性与排泄

线虫一般吃细菌藻类真菌原生动物,不过有些种类是滤食性的。线虫的排泄器官结构特殊,没有纤毛及焰细胞存在,可分为腺型和管型两种。腺型排泄器官属原始类型,通常由1到2个称为原肾细胞的大的腺细胞构成,开口在神经环附近的腹中线上。海中自由生活的线虫(如Linhomeus)属此,但一般为一个原肾细胞;小杆线虫Rhabdias)则具有两个。寄生线虫多为管型排泄器,是由一个原肾细胞特化形成,略呈H型,两个侧管在前端以一横管相连分别位于侧上皮索内,最后经过共同的小管以排泄孔开口在前端腹中线上,例如驼形线虫Camallanus)。蛔虫Ascaris lumbricoides)的排泄管也呈H形,只是横行管成网状,侧管前端不发达。

生殖与生命史

线虫一般行有性生殖。雄性通常比雌性小(差异往往相当巨大),而且尾端常呈弯曲状,好在交配时抓住雌性。交配时,一个以上的几丁质交接刺(spicule)会从泄殖腔伸出,并插入雌性的生殖孔。似变形虫的精子会沿着针状体爬入雌性虫体。卵被雌性排出时,可能已胚化(embryonated)或尚未胚化(unembryonated),意思是受精卵可能尚未发育。在自由生活的线虫种中,会孵化成幼虫,最后变成成虫;在寄生性的线虫种中,通常有一个更为复杂的生命周期。

生活方式

非寄生的线虫

非寄生线虫的发育通常会经过四次的蜕皮。不同种线虫的食性也不相同,包括藻类真菌、小型动物、排泄物、生物死尸、或是活的生物组织。非寄生的海洋线虫是小型底栖生物中很重要且数量繁多的生物之一。海洋线虫在分解过程中扮演重要的角色,有助于在海洋环境中的营养再利用,而且对因污染造成的环境变化相当敏感。秀丽隐杆线虫是一种生活在土壤里的线虫,是生物学家已有相当了解的模式生物。秀丽隐杆线虫的所有基因都已经定序,也确定了每一个细胞及所有神经元在发育过程中的变化。

寄生

动物寄生

野生灵长类粪便中的虫卵(多半是线虫)

寄生性的线虫常有十分复杂的生命周期,在不同的寄主或是寄主身上不同的部位间不断的迁移。感染途径有食用未煮熟而含有虫卵或幼虫的肉、经由未经保护的伤口进入、直接穿入皮肤、经由吸血动物的传移等等。人类身上常见的寄生性线虫有鞭虫钩虫蛲虫蛔虫丝虫(filarid)。旋毛虫会感染老鼠、猪,及人类,引起旋毛虫病贝蛔虫(Baylisascaris)通常感染野生动物,但是对人类一样是致命的。捻转血矛线虫Haemonchus contortus)是世界各地的绵羊中最常见的寄生虫,已对羊牧场造成了巨大的经济损失。

植物寄生

小麦线虫Anguina tritici),摄于西安

植物的寄生性线虫有几个会造成巨大经济损失的类型。最常见的几个有:穿孔线虫(Radopholus)、叶芽线虫属(Aphelenchoides)、根瘤线虫属(Meloidogyne)、胞囊线虫(Heterodera)、黄金线虫(Globodera)、伪根瘤线虫(Nacobbus)、根腐线虫(Pratylenchus)、茎线虫属(Ditylenchus)、剑线虫属(Xiphinema)、长针线虫(Longidorus)、残根线虫(Trichodorus)等。一些植物寄生线虫会破坏植物根的组织,并可能形成可见的虫瘿(根结线虫),这对它们的诊断是非常有用的指标。有些线虫会在它们以植物为食的时候传染植物病毒。其中一个例子是标准剑线虫Xiphinema index),葡萄扇叶病毒(GFLV,Grapevine Fanleaf Virus),一种很重要的葡萄疾病的带菌者。

其他的线虫会攻击树皮和森林中的树。这群线虫中最重要的代表是松材线虫,常见于亚洲及美洲,最近也于欧洲发现。

分类

线虫动物门的种类繁多,因为缺乏许多关于线虫的知识,其分类系统仍有争议。Chitwood BG兄弟及Chitwood MB提出一个最早期,也是很具有影响力的分类系统[12],后来也有再作修改[13],此分类系统将线虫分为无尾感器亚纲(Aphasmidia)及尾感器亚纲(Phasmidia)。后来重新命名为有腺纲(Adenophorea)及胞管肾纲(Secernentea)[14]。胞管肾纲有许多共同的特征,包括具有尾感器,也就是一对在后方两侧之处的感觉器官,这也成为分类的基础。因为无尾感器亚纲这个分类中还有些不同,因此也产生了许多后续不同的分类。

流行病学

2002年每十万人因为线虫感染造成的失能调整生命年

 无资料

 小于25

 25–50

 50–75

 75–100

 100–120

 120–140

 140–160

 160–180

 180–200

 200–220

 220–240

 大于240

许多线虫会造成人类的疾病,例如蛔虫病鞭虫病钩虫感染。蝇类线虫会造成丝虫病

土壤系统

90%的线虫居住在土壤上层15公分的范围。线虫本身是以生物为食,不会分解有机物质。线虫可以有效的调整细菌的数量以及其组成。线虫每分钟可以吃掉超过五千个细菌。线虫可以进行氮的矿物化,是氮循环中重要的一部分[15]

食肉真菌中的食线虫真菌是线虫的天敌。他们利用丝状物或是黏合结构来诱骗线虫[16] [17][18]

注释

  1. 来自希腊文nema:nematos(线)加ode(类似的)。
  2. Hodda, M. Phylum Nematoda Cobb, 1932. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011, 3148: 63–95. 
  3. Zhang, Z. Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa. 2013, 3703 (1): 5–11. doi:10.11646/zootaxa.3703.1.3. 
  4. Hsueh YP, Leighton DHW, Sternberg PW. (2014). Nematode Communication. In: Witzany G (ed). Biocommunication of Animals. Springer, 383-407. ISBN 978-94-007-7413-1.
  5. Lambshead PJD. Recent developments in marine benthic biodiversity research. Oceanis. 1993, 19 (6): 5–24. 
  6. 6.0 6.1 Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstott TC. Nematoda from the terrestrial deep subsurface of South Africa. Nature. 2011-06, 474 (7349): 79–82. PMID 21637257. doi:10.1038/nature09974. 
  7. Lemonick MD. Could 'worms from Hell' mean there's life in space?. Time. 2011-06-08 [2011-06-08]. ISSN 0040-781X. 
  8. Gold mine. Nature. 2011-06, 474 (7349): 6. doi:10.1038/474006b. 
  9. Drake N. Subterranean worms from hell: Nature News. Nature News. 2011-06-01 [2011-06-13]. 
  10. Danovaro R, Gambi C, Dell'Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, Vincx M, Gooday AJ. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr. Biol. 2008-01, 18 (1): 1–8. PMID 18164201. doi:10.1016/j.cub.2007.11.056. 简明摘要EurekAlert!. 
  11. Platt HM. foreword. Lorenzen S, Lorenzen SA (编). The phylogenetic systematics of freeliving nematodes. London: The Ray Society. 1994. ISBN 0-903874-22-9. 
  12. Chitwood BG, Chitwood MB. The characters of a protonematode. J Parasitol. 1933, 20: 130. 
  13. Chitwood BG. A revised classification of the Nematoda. Papers on helminthology, 30 year jubileum K.J. Skrjabin. Moscow: All-Union Lenin Academy of Agricultural Sciences. 1937: 67–79. 
  14. Chitwood BG. The designation of official names for higher taxa of invertebrates. Bull Zool Nomencl. 1958, 15: 860–95. 
  15. Nyle C. Brady & Ray R. Weil. Elements of the Nature and Properties of Soils (3rd Edition). Prentice Hall. 2009. ISBN 9780135014332. 
  16. Pramer C. Nematode-trapping fungi. Science. 1964, 144 (3617): 382–388. PMID 14169325. doi:10.1126/science.144.3617.382. 
  17. Hauser JT. Nematode-trapping fungi (PDF). Carnivorous Plant Newsletter. 1985-12, 14 (1): 8–11. 
  18. Ahrén D, Ursing BM, Tunlid A. Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiology Letters. 1998, 158 (2): 179–184. PMID 9465391. doi:10.1016/s0378-1097(97)00519-3. 

相关条目

外部链接